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We study the energy spectrum and electronic properties of two-dimensional electron gas in a periodic
magnetic field of zero average with symmetry of triangular lattice. We demonstrate how the structure of
electron energy bands can be changed with the variation in the field strength so that we can start from nearly
free-electron gas and then transform it continuously to a system of essentially localized chiral electron states.
We find that the electrons near some minima of the effective potential are responsible for occurrence of
dissipationless persistent currents creating a lattice of current contours. The topological properties of the
electron energy bands are also varied with the intensity of periodic field. We calculated the topological Chern
numbers of several lower-energy bands as a function of the field. The corresponding Hall conductivity is
nonzero, and when the Fermi level lies in the gap, it is quantized.
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I. INTRODUCTION

The aim of this work is to study the effect of a periodic
magnetic field of zero average on the dynamic of a free-
electron gas. The magnetic-field distribution forms a
“magnetic-field lattice” for electrons, which results in the
formation of electron energy bands controlled by the strength
and the geometry of the magnetic field.

The possibility of using periodic magnetic fields for
tailoring the electronic structure is mostly related to recent
advances in nanotechnology, which enable to manu-
facture two-dimensional �2D� lattice of ferromagnetic
nanocylinders.1 This idea has been already used by us to
suggest a system where the spin chirality mechanism related
to the anomalous Hall effect �AHE� in frustrated
ferromagnets2–5 can be measured and controlled externally.6

To detect this effect, we proposed to measure the Hall effect
in 2D diluted magnetic semiconductor on top of the nanolat-
tice of ferromagnetic cylinders. Another possible way to cre-
ate the periodic field is to use an array of magnetic nanodots
with tunable out-of-plane magnetization like in Ref. 7.

Previous investigations of the 2D electronic system in pe-
riodic magnetic fields concentrated mostly on the one-
dimensional �1D� periodic modulation8,9 and, in some cases,
on a mutual effect of the uniform and periodic magnetic
fields.10–14 The main difference of our work is that we as-
sume that the uniform magnetic field is exactly zero, whereas
the periodic field forms a real two-dimensional nanolattice.
For definiteness, here we focus on the case of triangular lat-
tice, which corresponds to the nanocylinder structure in Ref.
1. It should be emphasized that the assumption of zero uni-
form field is very important because it results in formation of
well-defined electron energy bands characterized by the elec-
tron momentum k such as in the case of electric modulation.

On the other hand, the presence of 2D magnetic-field modu-
lation substantially changes a picture of the “snakelike” elec-
tron motion in a nonuniform �linear-in-gradient� magnetic
field.15

The semiclassical consideration of the motion of electrons
in inhomogeneous magnetic field shows that the low-energy
electrons mostly tend to localize near the lines of zero mag-
netic field.15,16 The corresponding effective potential has a
different form for electrons moving in opposite directions
along the zero-field line. We found an analogous tendency to
the localization of electrons in the 2D periodic field. In this
case, the zero-field lines correspond to some closed trajecto-
ries of electron motion, which is chiral and quantized and
which leads to occurrence of equilibrium persistent currents.
It should be noted that usually the persistent currents are
associated with mesoscopic rings, for which the symmetry of
the electron motion in opposite directions is broken by the
magnetic field.17–22 However, in our case of the “magnetic
crystal,” the persistent currents appear similar to a periodic
array of circular currents.

Quite recently a lot of discussions have been induced by
the study of an “intrinsic” mechanism of AHE.23,24 In the
ballistic regime, when the impurities can be totally ne-
glected, the anomalous Hall effect is related to the topology
of electron energy bands, which can be characterized by in-
tegers called Chern numbers. It turned out that the discussion
of the intrinsic mechanism of AHE lead to a partial revision
of the Landau theory of Fermi liquid because the transport
properties are found to be related to the Berry curvature of
electron bands in momentum space,25 which means that the
corresponding topological element should be added to the
Landau theory.26

Some rather simplified theoretical models such as the 2D
electron gas with Rashba spin-orbit interaction or the relativ-
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istic 2D Dirac model allow full analytical calculation of the
Berry curvatures and Chern numbers. Recently, several pub-
lications reported calculations of the Berry curvature for
SrRuO3 �Ref. 24� and bcc Fe �Refs. 27 and 28� using ab
initio methods. In our previous paper,29 we presented nu-
merical calculations of the Berry curvature of the energy
bands of electrons interacting with a chiral spin texture de-
fined on top of a kagomé lattice. However, in the latter case
the essential element is the inhomogeneous orientation of the
localized spins, which leads to the chirality contribution2–5 to
the AHE.

In this paper, we study the topology of electron energy
bands by calculating the Chern numbers as a function of the
intensity of periodic magnetic field. The model with a peri-
odic field gives us such a parameter, which can presumably
be varied in the experiment �for example, by changing a
distance between the 2D layer and the nanocylinder lattice�.
This way we can demonstrate a strong jumplike dependence
of the Chern numbers on the field.

II. MODEL

We consider a model of two-dimensional electron gas
�2DEG� of spinless electrons in the x-y plane under periodic
magnetic field B�r�. Since the electrons move in the plane,
the only component of field acting on electrons is the com-
ponent perpendicular to this plane, which we denote by B�r�.
Then the properties of the system can be described by the
following Hamiltonian:

H =
�2

2m
�− i � −

e

�c
A�r��2

, �1�

where m is the effective electron mass and A�r� is the vector
potential related to the magnetic field B�r� by ��A�r�
=B�r�. In the following we use the Coulomb gauge deter-
mined by the condition � ·A�r�=0. In the case of zero aver-
age field, it is possible to choose the vector potential A�r� as
periodic in space �see below�.

Thus, we have a problem of electron in a periodic poten-
tial, and we can use the Bloch theorem for the eigenfunctions
of Hamiltonian �1�,

�n,k�r� = eik·run,k�r� , �2�

where n is the band index and k is the crystal momentum,
which is restricted to the first Brillouin zone. The function
un,k�r� is periodic, un,k�r�=un,k�r+R�, with R being the lat-
tice vector determined by the periodicity of the potential.
Substituting Eq. �2� into Eq. �1�, we find that un,k�r� verify

Hkun,k�r� = �n,kun,k�r� , �3�

where �n,k is the eigenvalue associated with the eigenfunc-
tion �n,k�r�, and

Hk =
�2

2m
�− i � + k −

e

�c
A�r��2

�4�

is the reduced Hamiltonian depending on k. Using the peri-
odicity of un,k�r�, we can write it as

un,k�r� = �
g

un,k�g�eig·r, �5�

where g is a vector of the reciprocal lattice, un,k�g� is the
Fourier transform of un,k�r� defined by

un,k�g� =
1

S
�

s

un,k�r�e−ig·rd2r , �6�

and S is the area of the unit cell. Substituting Eq. �6� into Eq.
�3�, we find that un,k�g� satisfy the following set of equa-
tions:

�
g�

Hk�g,g��un,k�g�� = �n,kun,k�g� . �7�

The matrix elements Hk�g ,g�� can be calculated by using
Eqs. �4� and �5�,

Hk�g,g�� =
�2

2m
��k + g�2�g,g� −

2e

�c
�k + g� · A�g − g��

+
e2

�2c2A2�g − g��� , �8�

where A�g� and A2�g� are the Fourier transforms of A�r� and
A2�r�, respectively. Note that Eq. �8� depends on the gauge
and is written in the Coulomb gauge g ·A�g�=0. Finally, the
Fourier transform of A2�r� is related to A�g� by the convo-
lution,

A2�g� = �
g�

A�g − g�� · A�g� . �9�

Up to now, the derivation is quite general. In the follow-
ing, we specify the form of the magnetic-field profile to the
symmetry of triangular lattice. It can be realized by using a
periodic array of ferromagnetic nanocylinders with a period
of few ten nanometers1 on top of 2DEG, similar to that ex-
plained in Ref. 6. This distribution is periodic in plane and its
Fourier components are decreasing exponentially with the
wave vector g and with the distance between the 2D film and
the array of ferromagnetic nanocylinders.

The magnetic field has a zero net flux over the unit cell,
and we assume that only the first Fourier components of the
field are important. The magnetic-field profile is shown in
Fig. 1. Our approximation is valid when the distance be-

−1.5 0 1.5 3

Γ K

M

FIG. 1. �Color online� �Left panel� Density plot of the magnetic-
field distribution �in arbitrary units�. The black lines are the isolines
B�r�=0. �Right panel� First Brillouin zone of the triangular lattice.
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tween the 2DEG and the array of ferromagnetic nanocylin-
ders is of the order of the lattice period.

We write down the z component of the magnetic field as

B�r� = B0�cos�2�

a
b1 · r� + cos�2�

a
b2 · r�

+ cos�2�

a
b3 · r�� , �10�

where B0 is the amplitude of the field and a is the lattice
period. The vectors bi with i=1,2 and b3=b2+b1 are the
vectors of reciprocal lattice of the triangular lattice. They are
defined by the relations bi ·a j =�ij, where i , j=1,2, a1
= �1,0�, a2= �1 /2,	3 /2�, and a3=a2−a1. The first Brillouin
zone �Fig. 1� is a hexagon with corners at ki=

4�
3a ai. The

�Coulomb gauge� vector potential A�r� can be chosen in the
following form �i.e., periodic in space�:

A�r� = A0�a2 sin�2�

a
b1 · r� − a1 sin�2�

a
b2 · r�

+ a3 sin�2�

a
b3 · r� ,� �11�

where A0=B0
	3a /4�.

For the numerical calculations we define the reduced units
B�r�→B0B�r�, A�r�→A0A�r�, g→ 2�

a g is the vector of re-
ciprocal lattice, and k→ 2�

a k is the crystal momentum taken
in the first Brillouin zone. The energy � is replaced by �
→�0�, with �0=�2 /2ma2. Finally, after introducing the di-
mensionless parameter �=−eA0a /H.c., Eq. �8� becomes

Hk�g,g�� = �0
�k + g�2�g,g� + 2�A�g − g�� · �k + g�

+ �2A2�g − g��� �12�

so that, unless stated, all the quantities will be presented in
the reduced dimensionless units. In what follows � is the
main parameter determining the intensity of the magnetic-
field modulation.

III. ELECTRON ENERGY SPECTRUM
AND WAVE FUNCTIONS

A. Weak magnetic field: Perturbation theory

Due to our choice of the gauge for the vector potential,
Eq. �11�, one can use the perturbation theory over A�r�,
which corresponds to the limit of weak magnetic field. Then
the unperturbed Hamiltonian is H0=−�2�2 /2m �in this sec-
tion we do not use reduced units�, and the Hamiltonian of
interaction,

Hint =
ie�

mc
A�r� · � +

e2

2mc2A2�r� , �13�

with

A�r� = A2 sin�g1 · r� − A1 sin�g2 · r� + A3 sin�g3 · r� ,

�14�

where Ai=A0ai and gi=
2�
a bi. The eigenfunctions of H0 are

the usual plane waves �k�r�= 1
2�eik·r, and the corresponding

matrix elements of interaction can be calculated as the Fou-
rier components of Hint,

Hint�q� =
e2A0

2

8mc2 
6��q� − ��q + 2g1� − ��q − 2g1� − ��q + 2g2�

− ��q − 2g2� − ��q + 2g3� − ��q − 2g3�

+ ��q + g1 + g2� − ��q + g1 − g2� − ��q − g1 + g2�

+ ��q − g1 − g2� − ��q + g1 + g3� + ��q + g1 − g3�

+ ��q − g1 + g3� − ��q − g1 − g3� − ��q + g2 + g3�

+ ��q + g2 − g3� + ��q − g2 + g3� − ��q − g2 − g3�� .

�15�

It should be noted that any matrix elements of the first �linear
in A� term in Eq. �13� are zero.

The perturbation related to Hint breaks the degeneracy of
states belonging to the points in the Brillouin zone separated
by vector g, for which Hint�g��0. Using Eq. �15� we find
the matrix elements corresponding to transitions between the
states in the opposite points at the Brillouin-zone edges,

Hint�g1� = Hint�g2� = Hint�g3� =
e2A0

2

8mc2 . �16�

For example, the element Hint�g2� couples the degenerate
states k= �0,−2� /a	3� and k�= �0,2� /a	3�. Using the per-
turbation theory for the degenerate states k and k�, we can
find that the value e2A0

2 /8mc2 determines the magnitude of
the corresponding energy gap at the Brillouin-zone edge.
Note that the gap in these points is nonzero for any weak
perturbation, and it increases with the amplitude of magnetic
field as B0

2.
We can find that the perturbation theory approach is valid

for ���	1. This condition can be also presented as 
 /
0
	1, where 
=B0a2	3 /2 is the flux of field B0 per elemen-
tary cell and 
0=hc /e is the flux quantum.

B. Energy spectrum

1. Degeneracies and symmetries of the Hamiltonian

The Hamiltonian �1� is invariant under discrete transla-
tions of vectors R= ia1+ ja2 and because of the polar nature
of the vector potential A�r�, it is also invariant under the
point group C6 �but not C6v� of pure sixfold rotations. Its
space group is therefore Abelian, and its irreducible repre-
sentations are all of dimension 1. This physically means that
the energy spectrum can only have accidental degeneracies
between consecutive energy bands.

2. Energy spectrum: Numerical results

The solution of Eq. �1� should be obtained by diagonaliz-
ing the infinite matrix with elements given by Eq. �8�. In
practice, one cuts the basis to get a finite matrix. We cut the
basis by introducing the energy cutoff �c; i.e., we keep the
plane waves with energies ���c and neglect the others.
Then we diagonalize the obtained matrix by using the Lanc-
zos algorithm �with reorthogonalization� implemented in the
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library SLEPC.30 Finally, the value of �c is chosen to get the
converged quantities.

The presence of linear term, which couples the momen-
tum k to the vector potential, gives rise to a rich energy
spectrum when the amplitude of magnetic field is changed.
In the low-field regime the band structure 
Fig. 2�a�� is simi-
lar to the band structure of free particle. It is slightly modi-
fied near the points obeying relation k2= �k+g�2 because the
Bloch bands are degenerated at these points. As we found in
Secs. III A and III B 1, the application of a periodic vector
potential leaves the degeneracy.

The energy spectrum demonstrates a strong variation
when the amplitude of magnetic field is increased. The gaps
can be seen for rather weak values of ��� 
Fig. 2�b�� and the
band width continuously decreases when ��� increases. Fig-
ures 2�b� and 2�c� show that the band crossing occur at some
high-symmetry points of the first Brillouin zone such as the
points K , M, and �. We see that the band crossing occur
very often when ��� is increased. As we shall see later, this
property is important for the quantization of Hall conductiv-
ity because it gives rise to the jumps in xy. The correspond-
ing jumps of xy when an external parameter is changed can
be identified as topological transitions.

Finally, for larger values of ��� 
Fig. 2�d��, the bands are
practically flat indicating that �i� electrons are mostly local-
ized and �ii� they have very low group velocity �i.e., the
electrons are extremely heavy�.

C. Properties of the Bloch states

Here we present the probability distribution of the Bloch
states in dependence on the parameter �. Our study is re-
stricted to the high-symmetry points of the first Brillouin
zone, where the Bloch state un,k�r� has the symmetry of the
point k.

Let us start by considering the � point. The Bloch state at
this point has the symmetry of the lattice. We consider first
the band n=1 as a function of �. The results of calculation of
the probability distribution ��n,k�r��2 for �=0.5 are presented
in Fig. 3. At small ��� �see Fig. 3, left�, the electrons are
mainly delocalized over the unit cell. However, they avoid
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FIG. 2. Energy spectrum of electrons in periodic magnetic field
calculated for �a� �=0.05, �b� 0.5, �c� 1, and �d� 5. Local gaps are
open at points of the Brillouin zone where degeneracies due to the
Bragg plan are located.

0 1 0.6 1

FIG. 3. �Color online� Probability distribution for the Bloch
states of the first energy band in � point for �=0.5. The black lines
are the isolines of constant magnetic field B�r�=0. The left panel
shows that the particle is substantially delocalized over the unit cell
but avoids the regions where the magnetic field is maximum. This
effect can clearly be seen on the right panel where the color scale
has been changed in order to see better the fine structure of the
Bloch states.
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the regions where the magnetic field is large �inside the re-
gions delimited by the black lines on the figure�. This is also
clearly illustrated by Fig. 3, right, where the color scale has
been changed in order to see the fine structure of the distri-
bution. As shown in Fig. 4�b�, the increase in the parameter
��� enhances this effect. The particles are rejected from the
region where the magnetic field is large and concentrated in
the regions where the field is close to zero 
Figs. 4�b� and
4�c��. Figure 4�d� represents the limiting case where the re-
pulsion effect confines the particle to the region close to the
line of B�r�=0 
black lines in Fig. 4�d��. In this case, the
particle is moving in an effective potential created by the
field profile, which forms a ring, with the ring width depend-
ing on �.

This behavior corresponds to the semiclassical picture of
the electron motion in linear magnetic field.15 In this ap-
proach the low-energy electron drifts along the line of mini-
mum magnetic field, and the trajectory of this motion can be
wavy or snakelike depending on the drift direction. One can
also understand the effect of electron localization as a ten-
dency to occupy the region, in which the energy of Landau
level is minimum.

Up to now, we considered the states in which the particle
is rejected into the regions of the weak field, but one can also
obtain the states with particles rejected from these regions
and concentrated in the regions where B�r� is large. Such
situation can be found by considering higher-energy bands. A
typical example is presented in the right panel of Fig. 5.

We also calculated the probability distribution at other
symmetry points of the Brillouin zone. Except for a partial
loss of symmetry, these electronic states have properties
similar to the electronic states at the � point.

Our main result for this section is that the strong periodic
field results in localization of electrons in some low-energy

states. The electrons of the lowest-energy bands are effec-
tively confined within some rings near the closed lines of
zero magnetic field, and the rings form a regular array cor-
responding to the symmetry of the magnetic-field lattice. The
characteristic thickness of the rings decreases with the field
intensity.

IV. PERSISTENT CURRENTS

Now we show that the electrons, which are confined
within the rings, are moving along the zero-field lines creat-
ing a regular array of equilibrium persistent currents. For this
purpose we calculate the local current density Jn,k�r� defined
as

Jn,k�r� =
�

2m
Re�un,k

† �r��− i � + k −
e

�
A�r��un,k�r�� ,

�17�

where un,k�r� refers to the corresponding Bloch state. One
can also calculate the total current density J�r� defined as the
sum over all occupied states below the Fermi level �F.

Let us consider the current distribution at the � point for
�=5 and n=1. The distribution density for the corresponding
Bloch state is shown in Fig. 4�d�, whereas Fig. 6 represents
the spatial distribution of x and y components of current
density 
Eq. �17��. As we see from Fig. 6, the electrons
within the rings are moving along the lines of B�r�=0 �black
lines on the figure� so that the current density is nonzero
along the circle. One can see at this picture that the current
density has an oscillating fine structure in the direction per-

0 1

(c) α = 2 (d) α = 5

(a) α = 0.5 (b) α = 1

FIG. 4. �Color online� Bloch states of the first band in the �
point for �a� �=0.5, �b� 1, �c� 2, and �d� 5. The black lines corre-
spond to B�r�=0. These figures shows that the particle tries to avoid
the region where the magnetic field is large. This effect can be seen
already in figure �a�, but it is better visible in �b� and �c�. For larger
���, the particle is confined around the lines of zero magnetic field.

0 1

FIG. 5. �Color online� Bloch states of the fifth band ��=0.5� and
fourth band ��=1� in the � point. The particle is confined in the
regions of strong magnetic field.

(a) Jx
nk(r) (b) Jy

nk(r)

−1.5 0.0 1.5

FIG. 6. �Color online� Components of the current density �in
unit of he /2ma� calculated for �=5 and n=1. It shows that the
particle moves along the lines B�r�=0 indicated in black.
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pendicular to the lines B�r�=0. Similar oscillations were ob-
served by Hofstetter et al.16 for electrons moving in linear
magnetic fields.

The appearance of persistent currents is due to the chiral-
ity of electron motion in the nonuniform magnetic field along
the line of B�r�=0. One can understand it by using a semi-
classical picture of the 1D motion in the inhomogeneous
field.15 The effective potential for the motion of an electron
along the zero-field line is different for the opposite direc-
tions of the motion. It results in a strong asymmetry of the
electron energy spectrum with respect to k→−k, where k is
the electron momentum along the zero-field line.

In the case of 2D periodic field, this chirality of electron
energy spectrum should be combined with the fact that the
trajectories are closed in circles. Then the energy spectrum is
not only asymmetric but also quantized due to the quantiza-
tion of the motion along the circular trajectory. Using the
semiclassical picture, one can find the quantized values of
the momentum from relation kn−Al=2�n /L, where Al is the
vector potential along the contour and L is its length. The
circulation of Al along the circle is equal to the encompassed
flux, which causes the difference in phases for electron mo-
tion in opposite directions. Thus, the condition of quantiza-
tion can be also presented as kn=2��n+
 /
0� /L. In our 2D
model of periodic field, the ratio 
 /
0 can be related to the
parameter �. The calculation of flux through an isoline B
=0 using Eq. �10� gives 
 /
03.2437�.

Figure 7�b� shows schematically the energy spectrum as a
function of momentum k along the circle. The points corre-
spond to the quantized values of k. As we see from Fig. 7,
even for integer values of 
 /
0, i.e., in absence of the
Aharonov-Bohm effect, the chirality of the motion in oppo-

site directions would result in appearance of nonzero electric
current along the circle. We therefore have identified a
mechanism for appearance of the persistent currents.

V. HALL EFFECT IN THE PERIODIC MAGNETIC FIELD

Here we consider the occurrence of nonvanishing off-
diagonal conductivity in the 2DEG with periodic magnetic
field. As emphasized earlier, we assume that the average
magnetic field is zero so that the ordinary Hall effect is ab-
sent. In our case, the mechanism of nonzero Hall conductiv-
ity has the same origin as the “intrinsic mechanism”23,24,31 of
the anomalous Hall effect in ferromagnets; i.e., the Hall ef-
fect in 2DEG in periodic magnetic field is related to the
nontrivial topology of electron energy bands in the momen-
tum space. However, unlike the anomalous Hall effect in
ferromagnets, it does not require any uniform magnetization.

It should be noted that this effect is also quite different
from the recently proposed “topological Hall effect” in tex-
tured ferromagnets.6 Even though it was proposed in Ref. 6
to use the periodic magnetic field and 2D semiconductor
with magnetic impurities, the only role of the magnetic field
was to order the magnetic moments in correspondence to the
field periodicity so that the topological properties of the mag-
netization profile are responsible for the topological Hall ef-
fect. But in the model under consideration there is no mag-
netization related to magnetic impurities. Nevertheless, as we
can see from the calculation of the off-diagonal conductivity,
xy, the Hall effect is nonzero.

The occurrence of Hall effect and the quantization of Hall
conductivity have been discovered in the past in the frame of
2D tight-binding honeycomb model with an additional peri-
odic magnetic field.32 The phase diagram of this model has
two phases with Chern numbers �1. Also, the quantum Hall
effect without any external magnetic field was found by
Volovik33 in the model of electrons in 3He film. In both cases
the origin of the Hall effect is related to topological proper-
ties of electron energy bands.

Assuming that the Fermi level is in the energy gap and in
the absence of impurities one obtains from the Kubo
formula,23,24

xy =
e2

�
�

n
� d2k

�2��2 f��n,k��n,k, �18�

where

�n,k = �k � An,k �19�

is the Berry curvature, An,k=−i�n ,k��k�n ,k� is the gauge
connection, and f��� is the Fermi function. Expression �18�
was first found by Karplus and Luttinger31 in the context of
the anomalous Hall effect.

Thus, if the Fermi level is in the energy gap and the tem-
perature is zero, the sum in Eq. �18� can be presented as a
sum over fully occupied energy bands

xy =
e2

�
�

n

�Chn, �20�

where we denoted as,
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FIG. 7. �a� Schematic view of the velocity and �b� dispersion
curves �only the first band is shown� of an electron moving in a
linear magnetic field. When the line B�r�=0 is infinite, the energy
spectrum is continuous as a function of momentum k along the line.
The minimum at the dispersion is indicated by arrow, and it corre-
sponds to kmin�0. For finite L the energy spectrum is discrete
�black points�.
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Chn =� d2k

�2��2�n,k, �21�

the Chern number of the nth energy band. The Chern num-
bers are integer34,35 because they are topological invariants.36

Correspondingly, if the Fermi level is in the gap, the Hall
conductivity 
Eq. �20�� is quantized such as in case of the
quantum Hall effect.34 The value of xy changes when the
gap between two occupied bands is closing and depends ex-
plicitly on the dispersion relation around the points where the
band degeneracies occur.37,38 So, the calculation of the off-
diagonal conductivity reduces to the calculations of the
Chern numbers when the Fermi level is located between two
separated bands.

We calculate numerically the Berry curvature 
Eq. �19��
and the Chern numbers 
Eq. �21��. It should be noted that the
computation of the derivative is a hard task because the
phase of the Bloch state is ill defined and gauge dependent.
Moreover, the summation over the first Brillouin zone in-
volves a large number of k points. The problem of deriva-
tives can be overcome by expressing the Berry connection in
term of the matrix elements of the velocity operators,

�n,k = i �
m�n

vx
nmvy

mn − vy
nmvx

mn

��n,k − �m,k�2 , �22�

where

vnm = �n,k�
�Hk

�k
�m,k� �23�

are the off-diagonal elements of the velocity operator. This
formula is gauge invariant but two difficulties remain. �i� We
need to calculate the sum over all energy bands and �ii� the
computational efforts to calculate the elements of the veloc-
ity operator can still be important. In practice, the summation
over unoccupied bands is usually truncated over a few num-
ber of unoccupied bands but a large number of k point is still
needed to calculate the Chern numbers.

Recently, Fukui et al.39 proposed another method of cal-
culation of the Chern numbers. This method has some ad-
vantages: one needs to calculate only the Bloch states of
occupied bands over a coarse mesh of the first Brillouin
zone. Moreover, the method is gauge invariant. In order to
calculate the Chern numbers, we define the quantity

�P
n = Im log��n,k1�n,k2��n,k2�n,k3�

� �n,k3�n,k4��n,k4�n,k1�� , �24�

where the function log z is defined in the complex plane with
branch cut along the negative real axis and Ps is a small
closed path passing by the points ks with s=1,2 ,3 ,4. The
quantity �P

n , which is often called the field strength, is the
Berry phase that a Bloch state acquires when it is transported
adiabatically along the path Ps. In this formalism, the Chern
number is given by a sum over the coarse mesh of phases
�Ps

n ,

Chn = �
Ps

�Ps

n . �25�

The last step is to decompose the first Brillouin zone into
small paths Ps and to calculate the field strength �Ps

n for each
small path. The decomposition of the first Brillouin zone is
illustrated in Fig. 8.

We calculated the Chern numbers of the first five energy
bands of our problem using this method and obtained the
results, which are shown in Fig. 9. It should be noted that the
sum given by Eq. �25� depends strongly on the number of
plane waves used to calculate the solutions of the
Schrödinger equation. This phenomena, which is not related
to any numerical errors, occurs because the truncation of the
basis breaks the symmetry Hk+g=Hk, where g is a vector of
the reciprocal space.40 The latter relation is used to prove that
the off-diagonal conductivity is an integer when the Fermi
level is in the gap. This effect cannot be observed in the case
of tight-binding models because this symmetry is always
verified. The effect disappears quickly when the number of
plane waves is increasing.

The Chern numbers of the first five bands are presented in
Fig. 9. These results show that the variation in the Chern
numbers with the intensity of field looks rather chaotic and
there is no simple relation between the values of �, for which
the band crossing occurs. It is known that the Chern numbers
are related to the band crossings between the different
bands.41 The value of the jump depends on the number of k
points in the first Brillouin zone, where the band crossing
occurs, and the dispersion relation around these points.38 Al-
though the physical mechanism is essentially the same, the
behavior observed here is much more complex as the one
obtained in Haldane’s simplified model.26

According to Eq. �20� the Hall conductivity can be found
using the Chern numbers provided that the Fermi energy is
within the gap. The dependence of xy on � is presented in
Fig. 10 for several integer numbers of electrons per unit cell
n. The solid line corresponds to the location of Fermi level
within the energy gap. The gap opens between closest bands
when � is increased. Each plateau demonstrates quantization
of the Hall conductivity within an interval of �.

k3 k2 k1

k4

k5
k6

k9 k8 k7

P1

P4 P3

P2

FIG. 8. Principle of construction of the paths Ps in the case of a
rectangular Brillouin zone and a given mesh. The black points in-
dicate the mesh taken for the decomposition of the first Brillouin
zone. P1=k1→k2→k5→k4→k1 and the orientation is indicated
by the arrow inside the rectangle. The others paths can be easy
deduced using a similar construction.
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In the other intervals of �, the energy bands are overlap-
ping as we can see in Fig. 2. In this case the Fermi level is
crossing the electron bands, and the Hall conductivity cannot
be expressed by the Chern numbers of separated bands. We
show it in the figure by the dotted line.

For large magnetic fields, ��1, we found that the Hall
conductivity vanishes as the Chern numbers tend to zero
when � is increasing �Fig. 9�. This is due to the fact that for
large values of � the electrons are strongly localized on the
lines of zero field as discussed in Sec. III C.

Our result confirms that the off-diagonal conductivity is
quantized if the Fermi level is located within the gap. It
should be noted that this does not really prove the existence
of Hall plateau, which could be observed when the field am-
plitude is varied for ideal systems. However, as for the usual
quantum Hall effect, the existence of finite plateaus with
quantized Hall conductivity, as � or electron density is var-

ied, will result from the formation of strongly localized states
in mobility gaps due to disorder and impurity scattering.

VI. EFFECT OF ELECTRON SPIN

In the previous consideration we did not take into account
the spin of electron. Now we discuss the effect of Zeeman
coupling between the electron spin and magnetic field. We
show that in the case of strong magnetic field it leads to a
small correction of vector potential.
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FIG. 9. Chern numbers of the first energy bands calculated as a
function of the amplitude of the magnetic field �. This figure shows
that the Chern numbers have chaotic variations which are connected
to closing gaps between the different bands.
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FIG. 10. Anomalous Hall conductivity as a function of � for
different numbers of electrons per unit cell �a� n=1, �b� 2, �c� 3, and
�d� 4. The solid line corresponds to the Fermi level within the gap,
and this demonstrates quantization of the anomalous Hall
conductivity.
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We consider the following Hamiltonian:

H =
1

2m

− i� � − qA�r��2 + g�BB�r� · � , �26�

where g is the gyromagnetic constant, �B is the Bohr mag-
neton, and � are the Pauli matrices. It should be noted that
�B is determined by the mass of free electron, m0, whereas
the first term in Eq. �26� contains the effective mass m. In the
case of semiconductors such as, e.g., GaAs, the large differ-
ence of these masses, m /m0	1, leads to relatively small
Zeeman splitting.

After a local rotation T�r� of the quantization axes along
the field in each point, the Hamiltonian reads

H =
1

2m

− i� � − qA�r� − qAg�r��2 + g�B�B�r��z,

�27�

with

Ag�r� = −
i�

q
T†�r� � T�r� = Ag

xx + Ag
yy + Ag

zz. �28�

The gauge field Ag�r� depends only on unit vector n�r�
=B�r� / �B�r�� which represents the direction of field in point
r. In the adiabatic regime, the off-diagonal terms of the
gauge field Ag�r� can be neglected.6 Hence, the spin-up and
spin-down electrons are decoupled, and the effective Hamil-
tonian describing each species have a form of Eq. �1� where
the effective magnetic field is given by B�r�=Bz�r��Bg�r�,
with Bg�r�=��Ag

z�r�.
The gauge field Bg�r� depends only on geometry of the

magnetic lattice but does not depend on the amplitude of
field B�r�.6 Its flux is quantized and equal to 2�n
0 with n
�Z. Then the gauge field Bg�r� can be neglected if the am-
plitude of magnetic field B�r� is larger than 2�n
0 /S or, in
other terms, if ��1.

VII. CONCLUSIONS

We calculated the energy spectrum of 2D electron gas in
periodic field with the symmetry of triangular lattice. As we
can see, the energy-band structure can be controlled by the

variation in the magnetic-field strength. Using the realistic
parameters of Fe nanolattice with the lattice parameter of
100 nm, we have estimated the magnitude of magnetic field
as 5 kG,6 which corresponds to values of � of the order of
0.1. This value strongly depends on the gap between the
nanolattice and the electron gas, which gives a possible way
to vary the field strength.

As a 2D electron gas one can use a metallic or semicon-
ductor layer. In this case there is also an additional crystal-
lattice field but the corresponding lattice constant a0 is much
smaller that the lattice constant of the periodic magnetic field
a. It means that we can neglect the effect of periodic field of
the crystal lattice as long as the energy of electrons �
	�2 /ma0

2.
We found that the low-energy electrons are effectively

localized near the lines of zero magnetic field, and in this
state they produce an equilibrium persistent currents in form
of a ring array. The mechanism of creation of such persistent
currents is not necessarily induced by the magnetic flux
through the ring but is rather related to the peculiarities of
electron motion in opposite directions along the zero-field
lines.

We have also shown that the quantum Hall effect can be
observed in this system when the Fermi energy is located in
the gap. In principle, the problem of controlling the Fermi-
level location has been already solved for 2D system with
the gate. In a structure with fully controlled periodic mag-
netic field and the Fermi energy, it would result in a large
functionality of the structure.

It should be noted that the impurity effects have been
ignored in our calculations. This is justified if the character-
istic sizes of 2D structure are smaller than the electron mean-
free path.
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